Nonparametric statistics
(Redirected from Non-parametric statistics)
Nonparametric statistics is a branch of statistics that is not based solely on parameterized families of probability distributions. Nonparametric statistics differs from parametric statistics in that the former does not assume that the structure of a data-generating process has a known form. Nonparametric models differ from their parametric counterparts in that the former are characterized by a set of parameters of fixed dimension, regardless of the number of observations.
Overview[edit | edit source]
Nonparametric methods are widely used for studying populations that take on a ranked order (such as movie reviews receiving one to four stars). The use of nonparametric methods may be necessary when data have a ranking but no clear numerical interpretation, such as when assessing preferences. In terms of levels of measurement, nonparametric methods result in ordinal data.
As nonparametric methods make fewer assumptions, their applicability is much wider than the corresponding parametric methods. In particular, they may be applied in situations where less is known about the application in question. Also, due to the reliance on fewer assumptions, nonparametric methods are more robust.
Nonparametric models[edit | edit source]
Nonparametric models differ from parametric models in that the model structure is not specified a priori but is instead determined from data. The term nonparametric is not meant to imply that such models completely lack parameters but that the number and nature of the parameters are flexible and not fixed in advance.
A histogram is a simple nonparametric estimate of a probability distribution. Kernel density estimates are a more sophisticated way of doing the same thing, but also require a bandwidth to be chosen.
Nonparametric tests[edit | edit source]
Nonparametric tests are a subset of statistical tests. They do not rely on assumptions that the data are drawn from a given probability distribution. As such, they are sometimes referred to as distribution-free tests. The best-known nonparametric test is the Mann–Whitney U test, which can test whether two independent samples were drawn from a population with the same distribution.
See also[edit | edit source]
References[edit | edit source]
Nonparametric statistics Resources | |
---|---|
|
Search WikiMD
Ad.Tired of being Overweight? Try W8MD's physician weight loss program.
Semaglutide (Ozempic / Wegovy and Tirzepatide (Mounjaro / Zepbound) available.
Advertise on WikiMD
WikiMD's Wellness Encyclopedia |
Let Food Be Thy Medicine Medicine Thy Food - Hippocrates |
Translate this page: - East Asian
中文,
日本,
한국어,
South Asian
हिन्दी,
தமிழ்,
తెలుగు,
Urdu,
ಕನ್ನಡ,
Southeast Asian
Indonesian,
Vietnamese,
Thai,
မြန်မာဘာသာ,
বাংলা
European
español,
Deutsch,
français,
Greek,
português do Brasil,
polski,
română,
русский,
Nederlands,
norsk,
svenska,
suomi,
Italian
Middle Eastern & African
عربى,
Turkish,
Persian,
Hebrew,
Afrikaans,
isiZulu,
Kiswahili,
Other
Bulgarian,
Hungarian,
Czech,
Swedish,
മലയാളം,
मराठी,
ਪੰਜਾਬੀ,
ગુજરાતી,
Portuguese,
Ukrainian
Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates, categories Wikipedia, licensed under CC BY SA or similar.
Contributors: Prab R. Tumpati, MD