Antisense RNA

From WikiMD's Wellness Encyclopedia

Figure1 Definition of antisense RNAs (asRNAs)
Figure 2 Mechanism of gene repression by asRNAs.

Antisense RNA (asRNA) is a form of RNA molecule that is complementary to a specific mRNA sequence. It is involved in the regulation of gene expression in both prokaryotic and eukaryotic organisms. By binding to target mRNA, antisense RNA can inhibit the translation of mRNA into protein, thus controlling the amount of protein produced from a gene. This process is known as antisense inhibition and is a key mechanism in the regulation of genetic information.

Mechanism[edit | edit source]

The primary mechanism of action for antisense RNA involves the binding to complementary mRNA sequences. This binding can lead to the degradation of the mRNA molecule or inhibit its translation, effectively reducing the production of proteins. In eukaryotes, this process often involves the RNA-induced silencing complex (RISC), which plays a crucial role in RNA interference (RNAi) pathways.

Applications[edit | edit source]

Antisense RNA technology has significant applications in both research and medicine. In research, it is used to study gene function by silencing specific genes and observing the resultant phenotypic changes. Medically, antisense RNA has been explored as a therapeutic approach for treating a variety of diseases, including genetic disorders, cancers, and viral infections. By targeting and silencing specific genes, antisense therapies have the potential to correct abnormal gene expression and ameliorate disease symptoms.

Antisense Therapy[edit | edit source]

One of the most notable applications of antisense RNA is in the development of antisense oligonucleotides (ASOs). These are short, synthetic strands of nucleic acids designed to bind to mRNA and inhibit gene expression. ASOs have been approved for the treatment of several diseases, including spinal muscular atrophy (SMA) and certain forms of Duchenne muscular dystrophy.

Challenges and Future Directions[edit | edit source]

Despite its potential, the use of antisense RNA in therapy faces several challenges. These include delivery to target cells, stability of antisense molecules, and off-target effects. Advances in nanoparticle delivery systems and chemical modifications of ASOs have shown promise in addressing some of these challenges. Ongoing research aims to improve the efficacy and safety of antisense therapies, with the hope of treating a wider range of diseases in the future.

See Also[edit | edit source]

Antisense RNA Resources
Wikipedia
WikiMD
Navigation: Wellness - Encyclopedia - Health topics - Disease Index‏‎ - Drugs - World Directory - Gray's Anatomy - Keto diet - Recipes

Search WikiMD

Ad.Tired of being Overweight? Try W8MD's physician weight loss program.
Semaglutide (Ozempic / Wegovy and Tirzepatide (Mounjaro / Zepbound) available.
Advertise on WikiMD

WikiMD's Wellness Encyclopedia

Let Food Be Thy Medicine
Medicine Thy Food - Hippocrates

Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates Wikipedia, licensed under CC BY SA or similar.

Contributors: Prab R. Tumpati, MD