Kumada coupling

From WikiMD's Wellness Encyclopedia

Kumada Coupling is a prominent chemical reaction that involves the coupling of an organohalide with an organomagnesium compound, known as a Grignard reagent. This reaction is a cornerstone in the field of organic chemistry, particularly in the synthesis of complex organic molecules. The Kumada Coupling is named after the Japanese chemist Makoto Kumada, who was instrumental in its development.

Overview[edit | edit source]

The Kumada Coupling reaction is a type of cross-coupling reaction that allows for the formation of carbon-carbon (C-C) bonds between two different organic molecules. The general reaction scheme involves the coupling of an organohalide (R-X) with an organomagnesium compound (R'-MgX), under the influence of a catalyst, typically a nickel (Ni) or palladium (Pd) complex. The result is the formation of a new carbon-carbon bond (R-R'), with the elimination of magnesium halide (MgX2) as a byproduct.

Mechanism[edit | edit source]

The mechanism of the Kumada Coupling involves several key steps:

  1. Oxidative Addition: The catalyst, usually a zero-valent nickel or palladium complex, undergoes oxidative addition with the organohalide, forming an organometallic complex.
  2. Transmetalation: The organomagnesium compound reacts with the organometallic complex, replacing the halide ligand with the organic group from the Grignard reagent.
  3. Reductive Elimination: The newly formed organometallic species undergoes reductive elimination, releasing the coupled product and regenerating the catalyst.

Applications[edit | edit source]

The Kumada Coupling has found widespread application in the synthesis of fine chemicals, pharmaceuticals, and polymers. Its ability to form carbon-carbon bonds efficiently and selectively makes it a valuable tool in the construction of complex organic molecules, including natural products and active pharmaceutical ingredients.

Advantages and Limitations[edit | edit source]

One of the main advantages of the Kumada Coupling is its use of relatively inexpensive and readily available Grignard reagents. Additionally, the reaction conditions are generally mild, and the reaction can tolerate a wide range of functional groups. However, the reaction has some limitations, including the sensitivity of Grignard reagents to moisture and the potential for competing side reactions.

Recent Developments[edit | edit source]

Recent advancements in Kumada Coupling have focused on expanding the scope of the reaction, improving its efficiency, and developing more environmentally friendly catalytic systems. Notable developments include the use of water-stable nickel catalysts and the application of continuous flow techniques to enhance reaction scalability and safety.

See Also[edit | edit source]

References[edit | edit source]


Chemistry icon li.svg
This article is a stub related to chemistry. You can help WikiMD by expanding it!


WikiMD
Navigation: Wellness - Encyclopedia - Health topics - Disease Index‏‎ - Drugs - World Directory - Gray's Anatomy - Keto diet - Recipes

Search WikiMD

Ad.Tired of being Overweight? Try W8MD's physician weight loss program.
Semaglutide (Ozempic / Wegovy and Tirzepatide (Mounjaro / Zepbound) available.
Advertise on WikiMD

WikiMD's Wellness Encyclopedia

Let Food Be Thy Medicine
Medicine Thy Food - Hippocrates

Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates Wikipedia, licensed under CC BY SA or similar.

Contributors: Prab R. Tumpati, MD