Likelihood-ratio test

From WikiMD's Wellness Encyclopedia

Likelihood-ratio test[edit | edit source]

The likelihood-ratio test is a statistical hypothesis test used to compare the fit of two nested statistical models. It is widely used in various fields, including statistics, econometrics, and machine learning. The test is based on the likelihood function, which measures the probability of observing the data given a specific model.

Overview[edit | edit source]

The likelihood-ratio test is used to determine whether a more complex model significantly improves the fit compared to a simpler model. It compares the likelihoods of the two models and calculates a test statistic, known as the likelihood ratio. This test statistic follows a chi-squared distribution under certain assumptions.

The test is conducted by comparing the difference in log-likelihoods between the two models. The null hypothesis assumes that the simpler model is true, while the alternative hypothesis assumes that the more complex model is true. The likelihood ratio is calculated as the difference in log-likelihoods multiplied by -2.

Procedure[edit | edit source]

To perform a likelihood-ratio test, several steps are followed:

1. Specify the null and alternative hypotheses: The null hypothesis assumes that the simpler model is true, while the alternative hypothesis assumes that the more complex model is true.

2. Estimate the parameters of both models: The parameters of each model are estimated using maximum likelihood estimation or other appropriate methods.

3. Calculate the log-likelihoods: The log-likelihoods of the observed data are calculated for both models.

4. Compute the likelihood ratio: The likelihood ratio is calculated as the difference in log-likelihoods multiplied by -2.

5. Determine the critical value: The critical value is determined based on the desired significance level and the degrees of freedom of the chi-squared distribution.

6. Compare the likelihood ratio to the critical value: If the likelihood ratio exceeds the critical value, the null hypothesis is rejected in favor of the alternative hypothesis. Otherwise, the null hypothesis is not rejected.

Interpretation[edit | edit source]

The likelihood-ratio test provides a way to assess the statistical significance of the improvement in fit between two models. If the test indicates a significant improvement, it suggests that the more complex model provides a better explanation of the data. On the other hand, if the test does not reject the null hypothesis, it suggests that the simpler model is sufficient and there is no need to consider the more complex model.

Applications[edit | edit source]

The likelihood-ratio test has numerous applications in various fields. In statistics, it is commonly used to compare nested models in regression analysis, such as linear regression models with different sets of predictors. In econometrics, it is used to test the significance of additional variables in a regression model. In machine learning, it is used to compare the performance of different models, such as different classifiers or neural network architectures.

Limitations[edit | edit source]

While the likelihood-ratio test is a powerful tool for model comparison, it has some limitations. One limitation is that it assumes that the models being compared are nested, meaning that one model is a special case of the other. Additionally, the test relies on certain assumptions, such as the models being correctly specified and the data being independent and identically distributed.

See also[edit | edit source]

References[edit | edit source]

WikiMD
Navigation: Wellness - Encyclopedia - Health topics - Disease Index‏‎ - Drugs - World Directory - Gray's Anatomy - Keto diet - Recipes

Search WikiMD

Ad.Tired of being Overweight? Try W8MD's physician weight loss program.
Semaglutide (Ozempic / Wegovy and Tirzepatide (Mounjaro / Zepbound) available.
Advertise on WikiMD

WikiMD's Wellness Encyclopedia

Let Food Be Thy Medicine
Medicine Thy Food - Hippocrates

Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates Wikipedia, licensed under CC BY SA or similar.

Contributors: Prab R. Tumpati, MD