Mitochondrial ribosomal protein L33
Mitochondrial ribosomal protein L33 (MRPL33) is a protein that in humans is encoded by the MRPL33 gene. This protein is a component of the mitochondrial ribosome, which is specialized for the synthesis of mitochondrial proteins. The mitochondrial ribosome is distinct from the cytoplasmic ribosomes that are responsible for the majority of protein synthesis within a cell. MRPL33 plays a critical role in the mitochondrial translation process, which is essential for the production of mitochondrial DNA-encoded enzymes involved in the oxidative phosphorylation pathway.
Function[edit | edit source]
MRPL33 is part of the large subunit of the mitochondrial ribosome. Mitochondrial ribosomes, or mitoribosomes, are responsible for synthesizing proteins that are crucial for the mitochondrial electron transport chain, a series of complexes that generate ATP through oxidative phosphorylation. The function of MRPL33, like other mitochondrial ribosomal proteins, is to ensure the proper assembly and stability of the mitoribosome, facilitating the translation of mitochondrial mRNA into functional proteins.
Structure[edit | edit source]
The structure of MRPL33, as with many mitochondrial ribosomal proteins, is adapted to function within the unique environment of the mitochondrion. Mitochondrial ribosomal proteins often have additional domains or modifications not found in their cytoplasmic counterparts, which may help in interacting with the mitochondrial membrane or the distinct mitochondrial mRNAs.
Genetic Information[edit | edit source]
The MRPL33 gene is located on the human chromosome 16. Mutations in this gene, like mutations in other genes encoding mitochondrial ribosomal proteins, can potentially disrupt mitochondrial protein synthesis, leading to mitochondrial dysfunction. This can contribute to a variety of mitochondrial diseases, highlighting the importance of MRPL33 in maintaining mitochondrial health and function.
Clinical Significance[edit | edit source]
While direct links between MRPL33 mutations and specific diseases are still under investigation, the general disruption of mitochondrial protein synthesis can lead to a range of mitochondrial disorders. These disorders can affect multiple systems in the body, given the critical role of mitochondria in energy production, and can present with a wide array of symptoms, from muscle weakness to neurodegenerative conditions.
See Also[edit | edit source]
This article is a molecular biology stub. You can help WikiMD by expanding it!
Search WikiMD
Ad.Tired of being Overweight? Try W8MD's physician weight loss program.
Semaglutide (Ozempic / Wegovy and Tirzepatide (Mounjaro / Zepbound) available.
Advertise on WikiMD
WikiMD's Wellness Encyclopedia |
Let Food Be Thy Medicine Medicine Thy Food - Hippocrates |
Translate this page: - East Asian
中文,
日本,
한국어,
South Asian
हिन्दी,
தமிழ்,
తెలుగు,
Urdu,
ಕನ್ನಡ,
Southeast Asian
Indonesian,
Vietnamese,
Thai,
မြန်မာဘာသာ,
বাংলা
European
español,
Deutsch,
français,
Greek,
português do Brasil,
polski,
română,
русский,
Nederlands,
norsk,
svenska,
suomi,
Italian
Middle Eastern & African
عربى,
Turkish,
Persian,
Hebrew,
Afrikaans,
isiZulu,
Kiswahili,
Other
Bulgarian,
Hungarian,
Czech,
Swedish,
മലയാളം,
मराठी,
ਪੰਜਾਬੀ,
ગુજરાતી,
Portuguese,
Ukrainian
Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates Wikipedia, licensed under CC BY SA or similar.
Contributors: Prab R. Tumpati, MD