Neutron star

From WikiMD's Wellness Encyclopedia

Error creating thumbnail:
Moving heart of the Crab Nebula
PIA18848-PSRB1509-58-ChandraXRay-WiseIR-20141023
Neutronstarsimple
Neutronstar 2Rs
Neutron star cross section

Neutron Star

A neutron star is a type of compact star that is the remnant of a massive star after it has undergone a supernova explosion. It is composed almost entirely of neutrons, subatomic particles with no net electric charge and slightly larger mass than protons. Neutron stars are incredibly dense, with masses comparable to that of the Sun, but with radii of only about 10 kilometers (6 miles), leading to densities billions of times greater than that of any material on Earth. The concept of neutron stars was first proposed by Walter Baade and Fritz Zwicky in 1934, shortly after the discovery of the neutron by James Chadwick.

Formation[edit | edit source]

Neutron stars are formed when the core of a massive star collapses under the force of gravity during a supernova explosion. This collapse continues until the densities become so high that protons and electrons combine to form neutrons and neutrinos in a process known as neutronization. The newly formed neutron star then cools and stabilizes, emitting a burst of neutrinos.

Characteristics[edit | edit source]

Neutron stars possess extremely strong magnetic fields, billions of times stronger than Earth's magnetic field. These magnetic fields, along with the rapid rotation rates of neutron stars, can lead to the emission of intense electromagnetic radiation, particularly in the form of X-rays and gamma rays. When these emissions are observed, the neutron star is often referred to as a pulsar or a magnetar, depending on the characteristics of the emissions.

Pulsars[edit | edit source]

Pulsars are neutron stars that emit beams of radiation that sweep through Earth's line of sight, producing a pulsed signal that can be detected by radio telescopes. The first pulsar was discovered in 1967 by Jocelyn Bell Burnell and Antony Hewish, marking a significant milestone in the study of neutron stars.

Magnetars[edit | edit source]

Magnetars are a type of neutron star with extremely powerful magnetic fields, thousands of times stronger than those of typical pulsars. Magnetars are responsible for emitting intense bursts of X-rays and gamma rays, phenomena known as soft gamma repeaters and anomalous X-ray pulsars.

Significance in Astrophysics[edit | edit source]

Neutron stars provide a unique environment for the study of matter under extreme conditions. They are laboratories for nuclear physics, quantum mechanics, and general relativity. The study of neutron stars can offer insights into the behavior of matter at nuclear densities, the nature of gravitational waves, and the properties of neutron-rich matter, which is relevant for understanding nuclear fusion processes in stars.

See Also[edit | edit source]


Planet - The Noun Project.svg
   This article is a astronomy-related stub. You can help WikiMD by expanding it!


WikiMD
Navigation: Wellness - Encyclopedia - Health topics - Disease Index‏‎ - Drugs - World Directory - Gray's Anatomy - Keto diet - Recipes

Search WikiMD

Ad.Tired of being Overweight? Try W8MD's physician weight loss program.
Semaglutide (Ozempic / Wegovy and Tirzepatide (Mounjaro / Zepbound) available.
Advertise on WikiMD

WikiMD's Wellness Encyclopedia

Let Food Be Thy Medicine
Medicine Thy Food - Hippocrates

Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates Wikipedia, licensed under CC BY SA or similar.

Contributors: Prab R. Tumpati, MD