PLGA

From WikiMD.com Medical Encyclopedia


Poly(lactic-co-glycolic acid)[edit | edit source]

Chemical structure of PLGA

Poly(lactic-co-glycolic acid) (PLGA) is a biodegradable and biocompatible copolymer that is widely used in biomedical applications, particularly in the field of drug delivery and tissue engineering. PLGA is synthesized by the random copolymerization of two different monomers, lactic acid and glycolic acid.

Chemical Properties[edit | edit source]

PLGA is an aliphatic polyester that is known for its ability to degrade into non-toxic byproducts, specifically lactic acid and glycolic acid, which are naturally metabolized by the body. The degradation rate of PLGA can be controlled by adjusting the ratio of lactic acid to glycolic acid in the copolymer. Typically, PLGA with a higher glycolic acid content degrades faster than those with a higher lactic acid content.

Synthesis[edit | edit source]

PLGA is synthesized through a process called ring-opening polymerization of the cyclic dimers of lactic acid and glycolic acid, known as lactide and glycolide, respectively. The polymerization process is typically catalyzed by stannous octoate or other catalysts, and the resulting polymer can be tailored to have different molecular weights and copolymer ratios.

Applications[edit | edit source]

PLGA is extensively used in the development of controlled drug delivery systems. Its ability to encapsulate a wide range of therapeutic agents, including proteins, peptides, and small molecules, makes it a versatile material for drug delivery. PLGA-based systems can provide sustained release of drugs over extended periods, improving patient compliance and therapeutic outcomes.

In tissue engineering, PLGA is used to fabricate scaffolds that support cell growth and tissue regeneration. Its biocompatibility and tunable degradation rates make it an ideal material for creating scaffolds that can gradually degrade as new tissue forms.

Advantages[edit | edit source]

PLGA offers several advantages in biomedical applications:

  • Biodegradability: PLGA degrades into lactic acid and glycolic acid, which are naturally metabolized by the body.
  • Biocompatibility: It is well-tolerated by the body and does not elicit significant immune responses.
  • Versatility: The copolymer ratio can be adjusted to control the degradation rate and mechanical properties.

Challenges[edit | edit source]

Despite its advantages, PLGA also presents some challenges:

  • Acidic Degradation Products: The degradation of PLGA can lead to the accumulation of acidic byproducts, which may affect the stability of encapsulated drugs or the surrounding tissue.
  • Hydrophobicity: PLGA is relatively hydrophobic, which can limit its ability to encapsulate hydrophilic drugs without modification.

Related pages[edit | edit source]

WikiMD
Navigation: Wellness - Encyclopedia - Health topics - Disease Index‏‎ - Drugs - World Directory - Gray's Anatomy - Keto diet - Recipes

Search WikiMD

Ad.Tired of being Overweight? Try W8MD's physician weight loss program.
Semaglutide (Ozempic / Wegovy and Tirzepatide (Mounjaro / Zepbound) available.
Advertise on WikiMD

WikiMD's Wellness Encyclopedia

Let Food Be Thy Medicine
Medicine Thy Food - Hippocrates

Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates, categories Wikipedia, licensed under CC BY SA or similar.

Contributors: Prab R. Tumpati, MD