Partial least squares regression
Partial Least Squares Regression (PLSR), also known as Partial Least Squares Structural Equation Modeling (PLS-SEM), is a statistical method that bears similarities to principal components regression; instead of finding hyperplanes of maximum variance between the response and independent variables, it finds a linear regression model by projecting the predicted variables and the observable variables to a new space. This technique is particularly useful in scenarios where the predictors are many and highly collinear, or when the number of observations is less than the number of predictors, thereby making traditional regression models unsuitable.
Overview[edit | edit source]
PLSR is a form of regression that combines features from both principal component analysis (PCA) and multiple regression. It is particularly useful in analyzing data with complex, multidimensional relationships. PLSR projects the independent variables (X) and the dependent variables (Y) into a new space formed by latent variables, which are linear combinations of the original variables. The goal is to maximize the covariance between the projected X and Y.
Applications[edit | edit source]
PLSR has been widely applied in various fields such as chemometrics, sensory analysis, and social science research. In chemometrics, for example, it is used to predict the concentration of chemical constituents in a mixture based on spectroscopic data. In sensory analysis, PLSR can help in understanding how different sensory attributes contribute to the overall acceptability of a product. In social sciences, it is used to model complex relationships between observed variables and latent constructs.
Mathematical Formulation[edit | edit source]
The mathematical foundation of PLSR involves the decomposition of the original data matrices, X (predictors) and Y (responses), into a set of scores and loadings for both X and Y, such that the covariance between the X scores and Y scores is maximized. This is achieved through an iterative algorithm, typically starting with a simple linear regression of Y on X, followed by extraction of latent variables that explain the maximum variance-covariance relationship between X and Y.
Advantages and Limitations[edit | edit source]
One of the main advantages of PLSR is its ability to handle highly collinear, high-dimensional data sets where traditional regression fails. It is also less sensitive to outliers compared to other regression techniques. However, PLSR can be criticized for its lack of a statistical foundation in terms of inference, making it difficult to assess the significance of the model parameters. Moreover, the choice of the number of latent variables to extract is somewhat subjective and can affect the model's performance.
Software Implementation[edit | edit source]
Several statistical software packages offer PLSR functionality, including R (with packages like pls and mixOmics), MATLAB, and Python (through libraries such as scikit-learn). These tools provide comprehensive functions for performing PLSR analysis, including model fitting, cross-validation, and prediction.
Conclusion[edit | edit source]
Partial Least Squares Regression is a versatile and powerful statistical tool for modeling complex relationships between multivariate datasets. Despite its limitations, it remains a popular choice in many fields for its ability to uncover latent structures in data and predict outcomes with high-dimensional predictors.
This article is a statistics-related stub. You can help WikiMD by expanding it!
Search WikiMD
Ad.Tired of being Overweight? Try W8MD's physician weight loss program.
Semaglutide (Ozempic / Wegovy and Tirzepatide (Mounjaro / Zepbound) available.
Advertise on WikiMD
WikiMD's Wellness Encyclopedia |
Let Food Be Thy Medicine Medicine Thy Food - Hippocrates |
Translate this page: - East Asian
中文,
日本,
한국어,
South Asian
हिन्दी,
தமிழ்,
తెలుగు,
Urdu,
ಕನ್ನಡ,
Southeast Asian
Indonesian,
Vietnamese,
Thai,
မြန်မာဘာသာ,
বাংলা
European
español,
Deutsch,
français,
Greek,
português do Brasil,
polski,
română,
русский,
Nederlands,
norsk,
svenska,
suomi,
Italian
Middle Eastern & African
عربى,
Turkish,
Persian,
Hebrew,
Afrikaans,
isiZulu,
Kiswahili,
Other
Bulgarian,
Hungarian,
Czech,
Swedish,
മലയാളം,
मराठी,
ਪੰਜਾਬੀ,
ગુજરાતી,
Portuguese,
Ukrainian
Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates, categories Wikipedia, licensed under CC BY SA or similar.
Contributors: Prab R. Tumpati, MD