Piezoelectricity

From WikiMD's Wellness Encyclopedia

Piezoelectric balance presented by Pierre Curie to Lord Kelvin, Hunterian Museum, Glasgow
Top view of Curie piezo electric compensator
SchemaPiezo
Piezo bending principle
Capacitor schematic with dielectric
Perovskite

Piezoelectricity is a property of certain materials that allows them to generate an electric charge in response to applied mechanical stress. This phenomenon is reversible; piezoelectric materials can also change shape when an external electric field is applied, producing a mechanical strain. The term "piezoelectricity" comes from the Greek word piezein, meaning to press or squeeze.

Discovery[edit | edit source]

Piezoelectricity was discovered in 1880 by French physicists Jacques and Pierre Curie. They found that certain crystals, including quartz, tourmaline, and rochelle salt, produced an electric potential when subjected to mechanical stress. This discovery has since led to the development of numerous applications that exploit the unique properties of piezoelectric materials.

Mechanism[edit | edit source]

The piezoelectric effect occurs due to the displacement of ions within the crystal lattice of a material. When mechanical stress is applied to a piezoelectric material, its crystal lattice is distorted, leading to an imbalance of charge and the generation of an electric potential. Conversely, when an electric field is applied, it causes a displacement of ions in the crystal lattice, resulting in a change in the shape of the material.

Materials[edit | edit source]

Piezoelectric materials can be natural, like quartz, or synthetic, such as polyvinylidene fluoride (PVDF). These materials are categorized into two main types: crystals and ceramics. Piezoelectric ceramics, like lead zirconate titanate (PZT), are widely used due to their high piezoelectric constants and ease of fabrication into various shapes.

Applications[edit | edit source]

Piezoelectric materials have a wide range of applications in modern technology. Some of the most common applications include:

  • Sensors: Piezoelectric materials are used in the manufacture of pressure and acceleration sensors, which are capable of converting mechanical stress into an electrical signal.
  • Actuators: These devices convert electrical signals into mechanical movement or stress and are used in precision positioning systems, such as those found in optical equipment.
  • Energy harvesting: Piezoelectric materials can be used to convert mechanical energy from vibrations or movements into electrical energy, providing a sustainable power source for small electronic devices.
  • Ultrasonic transducers: In medical imaging and industrial non-destructive testing, piezoelectric transducers are used to generate and detect ultrasonic waves.

Future Directions[edit | edit source]

Research in piezoelectric materials continues to evolve, with a focus on discovering new materials, improving the properties of existing materials, and developing innovative applications. One area of active research is the development of bio-compatible piezoelectric materials for use in medical implants and devices. Another promising area is the integration of piezoelectric materials into flexible electronics and wearable technology, which could open up new possibilities for energy harvesting and sensor applications.

WikiMD
Navigation: Wellness - Encyclopedia - Health topics - Disease Index‏‎ - Drugs - World Directory - Gray's Anatomy - Keto diet - Recipes

Search WikiMD

Ad.Tired of being Overweight? Try W8MD's physician weight loss program.
Semaglutide (Ozempic / Wegovy and Tirzepatide (Mounjaro / Zepbound) available.
Advertise on WikiMD

WikiMD's Wellness Encyclopedia

Let Food Be Thy Medicine
Medicine Thy Food - Hippocrates

Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates Wikipedia, licensed under CC BY SA or similar.

Contributors: Prab R. Tumpati, MD