T-distributed stochastic neighbor embedding

From WikiMD's Wellness Encyclopedia

Error creating thumbnail:
T-SNE_visualisation_of_word_embeddings_generated_using_19th_century_literature
Error creating thumbnail:
T-SNE_Embedding_of_MNIST

T-distributed stochastic neighbor embedding (t-SNE) is a machine learning algorithm for dimensionality reduction developed by Geoffrey Hinton and Laurens van der Maaten. It is particularly well-suited for the visualization of high-dimensional datasets.

Overview[edit | edit source]

t-SNE is a non-linear technique primarily used for data visualization. It converts similarities between data points to joint probabilities and tries to minimize the Kullback-Leibler divergence between the joint probabilities of the low-dimensional embedding and the high-dimensional data. The algorithm is an extension of Stochastic Neighbor Embedding (SNE) and aims to address the crowding problem inherent in SNE.

Algorithm[edit | edit source]

The t-SNE algorithm consists of two main stages: 1. **Computing pairwise similarities**: In the high-dimensional space, the similarity between two points is measured using a Gaussian distribution. In the low-dimensional space, a Student's t-distribution is used to measure similarity. 2. **Minimizing the Kullback-Leibler divergence**: The algorithm iteratively adjusts the positions of points in the low-dimensional space to minimize the divergence between the high-dimensional and low-dimensional similarity distributions.

Applications[edit | edit source]

t-SNE is widely used in various fields such as:

Advantages and Disadvantages[edit | edit source]

Advantages[edit | edit source]

  • Effective in capturing the local structure of the data.
  • Produces visually interpretable results.

Disadvantages[edit | edit source]

  • Computationally intensive, especially for large datasets.
  • The results can be sensitive to the choice of hyperparameters such as perplexity.

Related Techniques[edit | edit source]

See Also[edit | edit source]

References[edit | edit source]

External Links[edit | edit source]



```

This template is designed for use in marking articles related to machine learning as stubs, which are articles that are too short to provide more than rudimentary information about a subject. When this template is placed on a page, it automatically adds the page to the "Machine learning stubs" category, making it easier for contributors to find and expand short articles in this subject area.

WikiMD
Navigation: Wellness - Encyclopedia - Health topics - Disease Index‏‎ - Drugs - World Directory - Gray's Anatomy - Keto diet - Recipes

Search WikiMD

Ad.Tired of being Overweight? Try W8MD's physician weight loss program.
Semaglutide (Ozempic / Wegovy and Tirzepatide (Mounjaro / Zepbound) available.
Advertise on WikiMD

WikiMD's Wellness Encyclopedia

Let Food Be Thy Medicine
Medicine Thy Food - Hippocrates

Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates Wikipedia, licensed under CC BY SA or similar.

Contributors: Prab R. Tumpati, MD