Tensor rank decomposition

From WikiMD's Food, Medicine & Wellness Encyclopedia

Tensor rank decomposition, also known as canonical polyadic decomposition (CPD) or PARAFAC decomposition, is a form of tensor decomposition that generalizes the matrix singular value decomposition (SVD) to higher-order tensors. Tensor rank decomposition expresses a tensor as a sum of a finite number of rank-one tensors. This method is widely used in various fields such as signal processing, neuroscience, and data analysis, offering a powerful tool for the analysis of multi-way data.

Overview[edit | edit source]

A tensor is a multidimensional array, generalizing matrices to higher dimensions. The rank of a tensor, analogous to the rank of a matrix, is the minimum number of rank-one tensors that sum to the tensor. A rank-one tensor is a tensor that can be written as the outer product of vectors. Tensor rank decomposition aims to find such a representation, decomposing a given tensor into a sum of rank-one tensors.

Mathematical Formulation[edit | edit source]

Given a tensor \(T \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}\), the goal of tensor rank decomposition is to express \(T\) as a sum of \(R\) rank-one tensors, where \(R\) is the rank of \(T\). This can be written as:

\[T = \sum_{r=1}^R a_r^{(1)} \otimes a_r^{(2)} \otimes \cdots \otimes a_r^{(N)}\]

Here, \(a_r^{(n)}\) are vectors, and \(\otimes\) denotes the outer product. The smallest number \(R\) for which such a decomposition exists is called the tensor rank.

Applications[edit | edit source]

Tensor rank decomposition has found applications in various domains:

- In signal processing, it is used for blind source separation and analysis of multi-way signals. - In neuroscience, it helps in the analysis of brain imaging data to identify patterns of neural activity. - In data analysis and machine learning, it is employed for dimensionality reduction, data compression, and feature extraction.

Challenges[edit | edit source]

One of the main challenges in tensor rank decomposition is its computational complexity. The problem of finding the tensor rank is NP-hard, making exact decomposition infeasible for large tensors. Approximation algorithms and heuristics are commonly used to find near-optimal solutions.

Software and Tools[edit | edit source]

Several software packages and libraries offer implementations of tensor rank decomposition, including MATLAB's Tensor Toolbox, Python's TensorLy, and the R package rTensor.

See Also[edit | edit source]

References[edit | edit source]

Wiki.png

Navigation: Wellness - Encyclopedia - Health topics - Disease Index‏‎ - Drugs - World Directory - Gray's Anatomy - Keto diet - Recipes

Search WikiMD


Ad.Tired of being Overweight? Try W8MD's physician weight loss program.
Semaglutide (Ozempic / Wegovy and Tirzepatide (Mounjaro) available.
Advertise on WikiMD

WikiMD is not a substitute for professional medical advice. See full disclaimer.

Credits:Most images are courtesy of Wikimedia commons, and templates Wikipedia, licensed under CC BY SA or similar.


Contributors: Prab R. Tumpati, MD