Log-normal distribution
Log-normal distribution is a probability distribution of a random variable whose logarithm is normally distributed. Thus, if the random variable X is log-normally distributed, then Y = ln(X) has a normal distribution. Equivalently, if Y follows a normal distribution, then the exponential of Y, X = exp(Y), has a log-normal distribution. This distribution is used in various fields such as finance, environmental science, medicine, and engineering to model a wide range of phenomena that are positive-valued and have skewed distributions.
Characterization[edit | edit source]
The log-normal distribution is characterized by two parameters: the mean (μ) and standard deviation (σ) of the variable's natural logarithm. These parameters correspond to the location and scale parameters of the underlying normal distribution of the logarithm of the variable.
Probability density function[edit | edit source]
The probability density function (pdf) of a log-normal distribution is given by:
\[f(x;\mu,\sigma) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)\]
for x > 0, and f(x;μ,σ) = 0 otherwise. Here, μ and σ are the mean and standard deviation of the variable's logarithm, respectively.
Cumulative distribution function[edit | edit source]
The cumulative distribution function (cdf) of the log-normal distribution is:
\[F(x;\mu,\sigma) = \frac{1}{2} + \frac{1}{2}\mathrm{erf}\left(\frac{\ln x - \mu}{\sigma\sqrt{2}}\right)\]
where erf is the error function.
Properties[edit | edit source]
The log-normal distribution has several notable properties:
- It is skewed to the right, with a longer tail on the right side of the mode.
- The mean, median, and mode of a log-normal distribution are different, with the relationship: mode < median < mean.
- It is bounded below by zero but has no upper bound.
- Multiplicative processes often lead to log-normal distributions due to the central limit theorem, when the logarithm of the variable is considered.
Applications[edit | edit source]
The log-normal distribution is widely used in various fields:
- In finance, it models stock prices and other financial variables that cannot be negative and are positively skewed.
- In environmental science, it describes the distribution of particle sizes, concentrations of pollutants, and other environmental data.
- In medicine, it is used to model the distribution of latency periods of diseases and the distribution of biological parameters.
- In engineering, it models failure times and loads beyond the yield point in materials.
Parameter estimation[edit | edit source]
Parameters of the log-normal distribution can be estimated using methods such as maximum likelihood estimation or the method of moments. Given a sample of n observations, the sample mean (\bar{x}) and sample standard deviation (s) of the logarithms of the observations can be used to estimate μ and σ.
See also[edit | edit source]
References[edit | edit source]
Search WikiMD
Ad.Tired of being Overweight? Try W8MD's physician weight loss program.
Semaglutide (Ozempic / Wegovy and Tirzepatide (Mounjaro / Zepbound) available.
Advertise on WikiMD
WikiMD's Wellness Encyclopedia |
Let Food Be Thy Medicine Medicine Thy Food - Hippocrates |
Translate this page: - East Asian
中文,
日本,
한국어,
South Asian
हिन्दी,
தமிழ்,
తెలుగు,
Urdu,
ಕನ್ನಡ,
Southeast Asian
Indonesian,
Vietnamese,
Thai,
မြန်မာဘာသာ,
বাংলা
European
español,
Deutsch,
français,
Greek,
português do Brasil,
polski,
română,
русский,
Nederlands,
norsk,
svenska,
suomi,
Italian
Middle Eastern & African
عربى,
Turkish,
Persian,
Hebrew,
Afrikaans,
isiZulu,
Kiswahili,
Other
Bulgarian,
Hungarian,
Czech,
Swedish,
മലയാളം,
मराठी,
ਪੰਜਾਬੀ,
ગુજરાતી,
Portuguese,
Ukrainian
Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates Wikipedia, licensed under CC BY SA or similar.
Contributors: Prab R. Tumpati, MD