Methylation specific oligonucleotide microarray
Methylation specific oligonucleotide microarray (MSO microarray) is a high-throughput technique used to analyze DNA methylation patterns across the genome. This method combines the principles of microarray technology with methylation-specific detection, allowing researchers to study epigenetic modifications on a large scale.
Overview[edit | edit source]
DNA methylation is a crucial epigenetic modification involving the addition of a methyl group to the cytosine or adenine nucleotides in DNA. This process plays a significant role in regulating gene expression, genomic imprinting, X-chromosome inactivation, and suppression of transposable elements. Abnormal DNA methylation patterns are associated with various diseases, including cancer, neurological disorders, and cardiovascular diseases.
Principle[edit | edit source]
The MSO microarray technique involves several key steps: 1. DNA Extraction: Genomic DNA is extracted from the sample of interest. 2. Bisulfite Treatment: The DNA is treated with sodium bisulfite, which converts unmethylated cytosines to uracil, while methylated cytosines remain unchanged. 3. PCR Amplification: The bisulfite-treated DNA is amplified using polymerase chain reaction (PCR) with primers specific to methylated or unmethylated sequences. 4. Hybridization: The amplified DNA is hybridized to an oligonucleotide microarray containing probes specific to methylated and unmethylated sequences. 5. Detection and Analysis: The hybridized microarray is scanned, and the data is analyzed to determine the methylation status of the target sequences.
Applications[edit | edit source]
MSO microarrays are used in various research and clinical applications, including:
- Cancer Research: Identifying methylation biomarkers for early detection, prognosis, and therapeutic targets.
- Epigenetic Studies: Investigating the role of DNA methylation in gene regulation and development.
- Disease Diagnosis: Developing diagnostic tools for diseases associated with abnormal methylation patterns.
- Pharmacogenomics: Studying the impact of DNA methylation on drug response and personalized medicine.
Advantages and Limitations[edit | edit source]
Advantages[edit | edit source]
- High-throughput: Allows simultaneous analysis of thousands of CpG sites.
- Sensitivity: Capable of detecting low levels of methylation.
- Specificity: Differentiates between methylated and unmethylated sequences.
Limitations[edit | edit source]
- Cost: Relatively expensive compared to other methylation analysis methods.
- Complexity: Requires specialized equipment and expertise.
- Limited Coverage: May not cover all CpG sites in the genome.
See Also[edit | edit source]
References[edit | edit source]
External Links[edit | edit source]
Search WikiMD
Ad.Tired of being Overweight? Try W8MD's physician weight loss program.
Semaglutide (Ozempic / Wegovy and Tirzepatide (Mounjaro / Zepbound) available.
Advertise on WikiMD
WikiMD's Wellness Encyclopedia |
Let Food Be Thy Medicine Medicine Thy Food - Hippocrates |
Translate this page: - East Asian
中文,
日本,
한국어,
South Asian
हिन्दी,
தமிழ்,
తెలుగు,
Urdu,
ಕನ್ನಡ,
Southeast Asian
Indonesian,
Vietnamese,
Thai,
မြန်မာဘာသာ,
বাংলা
European
español,
Deutsch,
français,
Greek,
português do Brasil,
polski,
română,
русский,
Nederlands,
norsk,
svenska,
suomi,
Italian
Middle Eastern & African
عربى,
Turkish,
Persian,
Hebrew,
Afrikaans,
isiZulu,
Kiswahili,
Other
Bulgarian,
Hungarian,
Czech,
Swedish,
മലയാളം,
मराठी,
ਪੰਜਾਬੀ,
ગુજરાતી,
Portuguese,
Ukrainian
WikiMD is not a substitute for professional medical advice. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates Wikipedia, licensed under CC BY SA or similar.
Contributors: Prab R. Tumpati, MD