Two-photon excitation microscopy
Two-photon excitation microscopy[edit | edit source]
Two-photon excitation microscopy is a fluorescence imaging technique that allows imaging of living tissue up to a very high depth. It is a special variant of fluorescence microscopy that uses two photons of lower energy to excite a fluorophore, instead of one photon of higher energy. This technique was first developed in the 1990s and has since become a powerful tool in biological research.
Principle[edit | edit source]
Two-photon excitation relies on the simultaneous absorption of two photons by a fluorophore. Each photon has approximately half the energy (and thus twice the wavelength) required for excitation. This process is nonlinear and occurs only at the focal point of the laser, which allows for precise spatial localization of the excitation. The use of longer wavelengths reduces scattering in biological tissues, enabling deeper penetration and less photodamage compared to single-photon excitation.
Applications[edit | edit source]
Two-photon microscopy is widely used in neuroscience, cell biology, and developmental biology. It is particularly useful for imaging thick specimens, such as brain slices or whole embryos, where traditional fluorescence microscopy would be limited by scattering and absorption. The technique allows researchers to observe dynamic processes in living tissues, such as neuronal activity, blood flow, and cellular interactions.
Advantages[edit | edit source]
The main advantages of two-photon excitation microscopy include reduced photobleaching and phototoxicity, as well as improved imaging depth. The localized excitation reduces out-of-focus fluorescence, enhancing image contrast and resolution. Additionally, the use of infrared light minimizes damage to living tissues, making it ideal for long-term imaging studies.
Limitations[edit | edit source]
Despite its advantages, two-photon microscopy has some limitations. The requirement for high-intensity pulsed lasers can be costly and complex to operate. The technique also has lower temporal resolution compared to some other imaging methods, which can be a limitation for certain dynamic studies.
Related pages[edit | edit source]
References[edit | edit source]
Two-photon_excitation_microscopy[edit | edit source]
Two-photon_excitation_microscopy
Two-photon microscopy of in vivo brain function
Search WikiMD
Ad.Tired of being Overweight? Try W8MD's physician weight loss program.
Semaglutide (Ozempic / Wegovy and Tirzepatide (Mounjaro / Zepbound) available.
Advertise on WikiMD
WikiMD's Wellness Encyclopedia |
Let Food Be Thy Medicine Medicine Thy Food - Hippocrates |
Translate this page: - East Asian
中文,
日本,
한국어,
South Asian
हिन्दी,
தமிழ்,
తెలుగు,
Urdu,
ಕನ್ನಡ,
Southeast Asian
Indonesian,
Vietnamese,
Thai,
မြန်မာဘာသာ,
বাংলা
European
español,
Deutsch,
français,
Greek,
português do Brasil,
polski,
română,
русский,
Nederlands,
norsk,
svenska,
suomi,
Italian
Middle Eastern & African
عربى,
Turkish,
Persian,
Hebrew,
Afrikaans,
isiZulu,
Kiswahili,
Other
Bulgarian,
Hungarian,
Czech,
Swedish,
മലയാളം,
मराठी,
ਪੰਜਾਬੀ,
ગુજરાતી,
Portuguese,
Ukrainian
Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates, categories Wikipedia, licensed under CC BY SA or similar.
Contributors: Prab R. Tumpati, MD