Clavulanic acid
(Redirected from Clavulanate)
Clavulanic Acid is a beta-lactamase inhibitor that enhances the effectiveness of beta-lactam antibiotics against bacteria that would otherwise be resistant. It is structurally related to the penicillins and possesses the ability to inactivate a wide variety of beta-lactamase enzymes found in bacteria resistant to penicillins and cephalosporins. Clavulanic acid, by itself, does not possess any significant antibacterial activity. However, when combined with certain penicillin-type antibiotics, it can expand their spectrum of activity to include bacteria normally resistant to them.
Chemistry[edit | edit source]
Clavulanic acid is produced by the fermentation of the bacterium Streptomyces clavuligerus. It is a beta-lactam compound that shares a similar structure to penicillin. The molecular formula of clavulanic acid is C8H9NO5, and it functions primarily by binding to and permanently deactivating beta-lactamase enzymes, thus protecting beta-lactam antibiotics from degradation.
Mechanism of Action[edit | edit source]
The primary mechanism of action of clavulanic acid is the inhibition of beta-lactamase enzymes. These enzymes are produced by bacteria as a defense mechanism against beta-lactam antibiotics. By binding to the active sites of these enzymes, clavulanic acid prevents them from breaking down the antibiotic molecule, allowing the antibiotic to remain active against the bacteria.
Clinical Uses[edit | edit source]
Clavulanic acid is used in combination with amoxicillin (as Co-amoxiclav) or ticarcillin. These combinations are effective against a broad range of bacteria, including Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae, which might otherwise be resistant. The combinations are used to treat various infections, including respiratory tract infections, urinary tract infections, skin infections, and more.
Side Effects[edit | edit source]
The use of clavulanic acid can be associated with several side effects, most commonly gastrointestinal disturbances such as diarrhea, nausea, and vomiting. As with all medications, allergic reactions can occur but are less common. Liver dysfunction has been reported in a small number of cases, usually reversible upon discontinuation of the drug.
Resistance[edit | edit source]
While clavulanic acid is a powerful inhibitor of beta-lactamase enzymes, bacterial resistance can still develop. Some bacteria produce beta-lactamase enzymes that clavulanic acid cannot inhibit effectively, leading to treatment failure. Continuous monitoring and research are necessary to understand resistance mechanisms and develop new inhibitors.
Conclusion[edit | edit source]
Clavulanic acid represents a significant advancement in the fight against bacterial resistance to beta-lactam antibiotics. Its discovery and use in combination therapies have broadened the spectrum of bacterial infections that can be effectively treated. Ongoing research into beta-lactamase inhibitors and resistance mechanisms is essential to stay ahead in the battle against bacterial infections.
Search WikiMD
Ad.Tired of being Overweight? Try W8MD's physician weight loss program.
Semaglutide (Ozempic / Wegovy and Tirzepatide (Mounjaro / Zepbound) available.
Advertise on WikiMD
WikiMD's Wellness Encyclopedia |
Let Food Be Thy Medicine Medicine Thy Food - Hippocrates |
Translate this page: - East Asian
中文,
日本,
한국어,
South Asian
हिन्दी,
தமிழ்,
తెలుగు,
Urdu,
ಕನ್ನಡ,
Southeast Asian
Indonesian,
Vietnamese,
Thai,
မြန်မာဘာသာ,
বাংলা
European
español,
Deutsch,
français,
Greek,
português do Brasil,
polski,
română,
русский,
Nederlands,
norsk,
svenska,
suomi,
Italian
Middle Eastern & African
عربى,
Turkish,
Persian,
Hebrew,
Afrikaans,
isiZulu,
Kiswahili,
Other
Bulgarian,
Hungarian,
Czech,
Swedish,
മലയാളം,
मराठी,
ਪੰਜਾਬੀ,
ગુજરાતી,
Portuguese,
Ukrainian
WikiMD is not a substitute for professional medical advice. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates Wikipedia, licensed under CC BY SA or similar.
Contributors: Prab R. Tumpati, MD