Downregulation and upregulation
Downregulation and Upregulation are fundamental processes in cell biology and biochemistry that describe the increase (upregulation) or decrease (downregulation) in the number of receptors or the activity of these receptors on the cell surface. These mechanisms are crucial for the regulation of hormone levels, neurotransmitter activity, and overall cellular response to external stimuli. Understanding these processes is essential in the fields of medicine, pharmacology, and neuroscience.
Overview[edit | edit source]
Downregulation is a process by which a cell decreases the quantity of a cellular component, such as RNA or protein, in response to an external variable. An example of downregulation is the decrease in receptor density on the cell surface, which reduces the cell's sensitivity to a particular molecule or hormone. This can occur through mechanisms such as increased internalization of the receptors or decreased synthesis of the receptors.
Upregulation, on the other hand, is the process by which a cell increases the quantity of a cellular component. This can lead to an increased sensitivity to a particular molecule or hormone. Upregulation can occur through mechanisms such as decreased degradation of the receptors or increased synthesis of the receptors.
Mechanisms[edit | edit source]
Downregulation[edit | edit source]
Downregulation can occur through several mechanisms:
- Internalization: Receptors are removed from the cell surface and internalized, often to be degraded.
- Decreased synthesis: The cell reduces the production of new receptors.
- Increased degradation: The rate at which receptors are degraded is increased.
Upregulation[edit | edit source]
Upregulation mechanisms include:
- Increased synthesis: The cell produces more receptors.
- Decreased degradation: The cell slows down the degradation of receptors.
- Recycling: Internalized receptors are returned to the cell surface.
Clinical Significance[edit | edit source]
Downregulation and upregulation have significant implications in clinical medicine. For example, prolonged exposure to high levels of a hormone or neurotransmitter can lead to receptor downregulation, diminishing the cell's response to that molecule. This mechanism is observed in the development of drug tolerance, where increased doses of a drug are required to achieve the same effect.
Conversely, upregulation can lead to increased sensitivity to a hormone or neurotransmitter. This is seen in certain types of heart failure, where there is upregulation of receptors for certain hormones as a compensatory mechanism.
Pharmacological Implications[edit | edit source]
Understanding downregulation and upregulation is crucial in pharmacology for the development of drugs and in predicting drug responses. Drugs can be designed to either promote or inhibit these processes, depending on the desired therapeutic outcome. For instance, drugs that inhibit the downregulation of receptors can prolong the effectiveness of endogenous or exogenous compounds.
See Also[edit | edit source]
Search WikiMD
Ad.Tired of being Overweight? Try W8MD's physician weight loss program.
Semaglutide (Ozempic / Wegovy and Tirzepatide (Mounjaro / Zepbound) available.
Advertise on WikiMD
WikiMD's Wellness Encyclopedia |
Let Food Be Thy Medicine Medicine Thy Food - Hippocrates |
Translate this page: - East Asian
中文,
日本,
한국어,
South Asian
हिन्दी,
தமிழ்,
తెలుగు,
Urdu,
ಕನ್ನಡ,
Southeast Asian
Indonesian,
Vietnamese,
Thai,
မြန်မာဘာသာ,
বাংলা
European
español,
Deutsch,
français,
Greek,
português do Brasil,
polski,
română,
русский,
Nederlands,
norsk,
svenska,
suomi,
Italian
Middle Eastern & African
عربى,
Turkish,
Persian,
Hebrew,
Afrikaans,
isiZulu,
Kiswahili,
Other
Bulgarian,
Hungarian,
Czech,
Swedish,
മലയാളം,
मराठी,
ਪੰਜਾਬੀ,
ગુજરાતી,
Portuguese,
Ukrainian
Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates Wikipedia, licensed under CC BY SA or similar.
Contributors: Prab R. Tumpati, MD