Post hoc analysis

From WikiMD's Wellness Encyclopedia

Post hoc analysis, also known as post hoc ergo propter hoc analysis, is a statistical technique used to identify patterns, effects, or trends that emerge in the data of a study after the study has been conducted. It is a form of data analysis that is performed after an experiment or study has been completed, hence the name post hoc, which is Latin for "after this". This type of analysis is often used in research to explore new hypotheses that were not initially considered or to provide further insights into the results.

Overview[edit | edit source]

Post hoc analysis can be a powerful tool for generating hypotheses for future studies, but it also carries the risk of finding false positives or patterns that occur by chance due to the multiple comparisons being made. Therefore, it is crucial to approach post hoc analyses with caution and to use statistical methods that adjust for the increased risk of type I errors (false positives), such as the Bonferroni correction or the Tukey's range test.

Types of Post Hoc Analyses[edit | edit source]

There are several types of post hoc analyses, each with its specific application and methodology. Some of the most common include:

  • Exploratory Data Analysis (EDA): An approach to analyzing data sets to summarize their main characteristics, often with visual methods. EDA is used to see what the data can tell us beyond the formal modeling or hypothesis testing task.
  • Subgroup Analysis: This involves comparing the effects of treatments or interventions in different subgroups of study participants to identify any differential effects that may not be apparent in the overall analysis.
  • Multiple Comparisons: When multiple statistical tests are performed, the chance of finding at least one significant result due to chance increases. Post hoc analyses in this context aim to control the family-wise error rate or the false discovery rate.

Applications[edit | edit source]

Post hoc analysis is widely used across various fields such as medicine, psychology, economics, and ecology. In medicine, for example, it can help identify which subgroups of patients may benefit more from a particular treatment. In economics, it can be used to understand the impact of policy changes on different sectors of the economy.

Limitations[edit | edit source]

While post hoc analysis can provide valuable insights, it has limitations. The main criticism is that it can lead to spurious conclusions if not conducted properly. Since these analyses are not based on pre-specified hypotheses, there is a higher risk of attributing significance to random variations in the data. Therefore, findings from post hoc analyses should be considered exploratory and validated through further research.

Conclusion[edit | edit source]

Post hoc analysis is a crucial tool in the arsenal of researchers, allowing for the exploration of data beyond initial hypotheses and the discovery of new insights. However, its findings should be interpreted with caution, and subsequent studies should be designed to confirm these findings under more controlled conditions.

Post hoc analysis Resources
Wikipedia
WikiMD
Navigation: Wellness - Encyclopedia - Health topics - Disease Index‏‎ - Drugs - World Directory - Gray's Anatomy - Keto diet - Recipes

Search WikiMD

Ad.Tired of being Overweight? Try W8MD's physician weight loss program.
Semaglutide (Ozempic / Wegovy and Tirzepatide (Mounjaro / Zepbound) available.
Advertise on WikiMD

WikiMD's Wellness Encyclopedia

Let Food Be Thy Medicine
Medicine Thy Food - Hippocrates

Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates Wikipedia, licensed under CC BY SA or similar.

Contributors: Prab R. Tumpati, MD