Parve101q
ParvE101Q is an experimental modification of parvalbumin, designed to delay calcium sequestration in heart muscles to enhance contraction.[1] The protein parvalbumin has EF hand motifs used for calcium binding.[2] EF hands are structural helix-loop-helix protein subunits that have a high affinity for calcium ions, and a moderate affinity for magnesium ions.[3] In muscle, the binding of Ca2+ by parvalbumin efficiently sequesters it following contraction. This increases the speed of muscle relaxation, allowing the muscle to contract again sooner.[1] Although parvalbumin is classified as a delayed calcium buffer, it quickly sequesters Ca2+, usually before the muscle is done fully contracting.[4] Large amounts of parvalbumin allow rapid contractions of muscles at a high contractile speed with the trade-off of having relatively lower contraction force.[4] This decreased force of contraction is due to the rapid sequestration of Ca2+, preventing prolonged contraction which is required for greater force.
Biochemistry[edit | edit source]
It has been theorized that expressing a modified version of parvalbumin in the heart could have therapeutic use to aid heart contraction, and treat relaxation disorders.[5] ParvE101Q is optimized so that relaxation is rapid, but contraction lasts for a sufficient time to fully eject blood.[1] Amino acid substitutions of glutamine for glutamate on the protein’s 101st amino acid were introduced, followed immediately by a tryptophan replacing a phenylalanine at site 102, as well as alanine replacing aspartate at site 51. By introducing these changes, the preferential binding of Ca2+ and Mg2+ were reversed. Instead of having high preference for Ca2+ like parvalbumin, ParvE101Q has a preference for Mg2+ first, and Ca2+ second.[1] This reversed binding preference allows the normal presence of Mg2+ to delay the Ca2+ sequestration of ParvE101Q. This delay allows heart contraction to last long enough to preserve blood ejection, then have the excess Ca2+ bound and sequestered by ParvE101Q. The resulting increase in contractility is speculated to be due to the increased Mg2+ binding affinity. By binding Mg2+ first, ParvE101Q allows more Ca2+ binding to Troponin C, which is required for myocyte contraction.[1] The result of the modification is an increased contractility and quicker relaxation in myocytes with no reported side-effects.[1] This modified protein retains the heart’s ability to store calcium in the sarcoplasmic reticulum, even under the added stress of caffeine. Additionally, when treated with ParvE101Q, calcium sparks (spontaneous releases of Ca2+ from the sarcoplasmic reticulum) are not different from normal. Other Ca2+ handling proteins used for sequestration are not affected by ParvE101Q, and the effects are not dependent on temperature changes.[1]
Clinical applications[edit | edit source]
Clinically, ParvE101Q shows promise in correcting diastolic heart failure. Diastolic heart failure is a condition where the heart has trouble relaxing efficiently. As a result, less blood is pumped out of the ventricles and the blood trying to enter the heart can back up in the circulation to cause hypertension, often in the lungs, and congestive heart failure develops.[6] Additionally, the decreased ability of the heart to eject blood leads to perfusion problems to vital organs such as the heart’s coronary arteries and the brain. ParvE101Q is being investigated for side effects, and optimal delivery mechanisms before moving on to experimental trials to treat conditions such as diastolic heart failure. Parvalbumin has diverse effects on cell cycles, second messengers, microtubule organization, cardiac muscle contraction, and the nervous system.[7][8]
References[edit | edit source]
External links[edit | edit source]
- Parvalbumins at the US National Library of Medicine Medical Subject Headings (MeSH)
Search WikiMD
Ad.Tired of being Overweight? Try W8MD's physician weight loss program.
Semaglutide (Ozempic / Wegovy and Tirzepatide (Mounjaro / Zepbound) available.
Advertise on WikiMD
WikiMD's Wellness Encyclopedia |
Let Food Be Thy Medicine Medicine Thy Food - Hippocrates |
Translate this page: - East Asian
中文,
日本,
한국어,
South Asian
हिन्दी,
தமிழ்,
తెలుగు,
Urdu,
ಕನ್ನಡ,
Southeast Asian
Indonesian,
Vietnamese,
Thai,
မြန်မာဘာသာ,
বাংলা
European
español,
Deutsch,
français,
Greek,
português do Brasil,
polski,
română,
русский,
Nederlands,
norsk,
svenska,
suomi,
Italian
Middle Eastern & African
عربى,
Turkish,
Persian,
Hebrew,
Afrikaans,
isiZulu,
Kiswahili,
Other
Bulgarian,
Hungarian,
Czech,
Swedish,
മലയാളം,
मराठी,
ਪੰਜਾਬੀ,
ગુજરાતી,
Portuguese,
Ukrainian
Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates Wikipedia, licensed under CC BY SA or similar.
Contributors: Prab R. Tumpati, MD