Pseudohypoaldosteronism type 1

From WikiMD's Wellness Encyclopedia

Other names:PHA1;pseudohypoaldosteronism type I

Pseudohypoaldosteronism type 1 (PHA1) is a condition characterized by problems regulating the amount of sodium in the body. Sodium regulation, which is important for blood pressure and fluid balance, primarily occurs in the kidneys. However, sodium can also be removed from the body through other tissues, such as the sweat glands and colon. Pseudohypoaldosteronism type 1 is named for its characteristic signs and symptoms, which mimic (pseudo) low levels (hypo) of a hormone called aldosterone that helps regulate sodium levels. However, people with PHA1 have high levels of aldosterone.

Types[edit | edit source]

There are two types of PHA1 distinguished by their severity, the genes involved, and how they are inherited. One type, called autosomal dominant PHA1 (also known as renal PHA1) is characterized by excessive sodium loss from the kidneys. This form of the condition is relatively mild and often improves in early childhood.

The other type, called autosomal recessive PHA1 (also known as generalized or systemic PHA1) is characterized by sodium loss from the kidneys and other organs, including the sweat glands, salivary glands, and colon. This type of PHA1 is more severe and does not improve with age.

Epidemiology[edit | edit source]

PHA1 is a rare condition that has been estimated to affect 1 in 80,000 newborns.

Cause[edit | edit source]

Mutations in one of four different genes involved in sodium regulation cause autosomal dominant or autosomal recessive PHA1. Mutations in the NR3C2 gene cause autosomal dominant PHA1. This gene provides instructions for making the mineralocorticoid receptor protein.

Mutations in the SCNN1A, SCNN1B, or SCNN1G genes cause autosomal recessive PHA1. Each of these three genes provides instructions for making one of the pieces (subunits) of a protein complex called the epithelial sodium channel (ENaC).

The mineralocorticoid receptor regulates specialized proteins in the cell membrane that control the transport of sodium or potassium into cells. In response to signals that sodium levels are low, such as the presence of the hormone aldosterone, the mineralocorticoid receptor increases the number and activity of these proteins at the cell membrane of certain kidney cells. One of these proteins is ENaC, which transports sodium into the cell; another protein simultaneously transports sodium out of the cell and potassium into the cell. These proteins help keep sodium in the body through a process called reabsorption and remove potassium from the body through a process called secretion.

Mutations in the NR3C2 gene lead to a nonfunctional or abnormally functioning mineralocorticoid receptor protein that cannot properly regulate the specialized proteins that transport sodium and potassium. As a result, sodium reabsorption and potassium secretion are both decreased, causing hyponatremia and hyperkalemia.

Mutations in the SCNN1A, SCNN1B, and SCNN1G genes result in reduced functioning or nonfunctioning ENaC channels. As in autosomal dominant PHA1, the reduction or absence of ENaC function in the kidneys leads to hyponatremia and hyperkalemia. In addition, nonfunctional ENaC channels in other body systems lead to additional signs and symptoms of autosomal recessive PHA1, including lung infections and skin lesions.

Inheritance[edit | edit source]

PHA1 can have different inheritance patterns. When the condition is caused by mutations in the NR3C2 gene, it is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder.

When PHA1 is caused by mutations in the SCNN1A, SCNN1B, or SCNN1G genes, it is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.

Signs and symptoms[edit | edit source]

The earliest signs of both types of PHA1 are usually the inability to gain weight and grow at the expected rate (failure to thrive) and dehydration, which are typically seen in infants. The characteristic features of both types of PHA1 are excessive amounts of sodium released in the urine (salt wasting), which leads to low levels of sodium in the blood (hyponatremia), and high levels of potassium in the blood (hyperkalemia). Infants with PHA1 can also have high levels of acid in the blood (metabolic acidosis). Hyponatremia, hyperkalemia, or metabolic acidosis can cause nonspecific symptoms such as nausea, vomiting, extreme tiredness (fatigue), and muscle weakness in infants with PHA1.

Infants with autosomal recessive PHA1 can have additional signs and symptoms due to the involvement of multiple organs. Affected individuals may experience episodes of abnormal heartbeat (cardiac arrhythmia) or shock because of the imbalance of salts in the body. They may also have recurrent lung infections or lesions on the skin. Although adults with autosomal recessive PHA1 can have repeated episodes of salt wasting, they do not usually have other signs and symptoms of the condition.

Diagnosis[edit | edit source]

The diagnosis of PHA type 1 was made after receipt of their significantly elevated aldosterone levels (ranging from 35 700 to 83 390 pmol/l) and increased plasma renin activity (ranging from 16 to >250 nmol/l per h). Differential diagnoses based on the initial electrolytes includes hypoaldosteronism, secondary PHA, adrenal hypoplasia, congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency, or specific hormonal blocks within the adrenal biosynthetic pathway. Some of these enzyme deficiencies may be associated with indeterminate genitalia and consequently a range of biochemical abnormalities; neither of which were apparent in our infants. A detailed discussion of these is beyond the scope of this report.

Treatment[edit | edit source]

Management of renal PHA type 1 is with sodium supplementation, and requirements often decrease with age. Systemic PHA type 1 requires aggressive and intensive fluid and electrolyte management. Securing an enteral feeding route and i.v. access are essential to facilitate ongoing therapy.





NIH genetic and rare disease info[edit source]

Pseudohypoaldosteronism type 1 is a rare disease.


Pseudohypoaldosteronism type 1 Resources
Wikipedia
WikiMD
Navigation: Wellness - Encyclopedia - Health topics - Disease Index‏‎ - Drugs - World Directory - Gray's Anatomy - Keto diet - Recipes

Search WikiMD

Ad.Tired of being Overweight? Try W8MD's physician weight loss program.
Semaglutide (Ozempic / Wegovy and Tirzepatide (Mounjaro / Zepbound) available.
Advertise on WikiMD

WikiMD's Wellness Encyclopedia

Let Food Be Thy Medicine
Medicine Thy Food - Hippocrates

Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates Wikipedia, licensed under CC BY SA or similar.

Contributors: Deepika vegiraju