Ras GTPase
An overview of Ras GTPase, its function, and significance in cellular processes
Ras GTPase is a family of proteins involved in transmitting signals within cells (cellular signal transduction). These proteins are a subfamily of the small GTPase superfamily and play a crucial role in the regulation of cell division, differentiation, and survival. Ras proteins are often referred to as molecular switches because they cycle between an active GTP-bound state and an inactive GDP-bound state.
Structure and Function[edit | edit source]
Ras proteins are small, approximately 21 kDa, and are composed of a single polypeptide chain. They have a highly conserved structure that includes a GTP-binding domain and a C-terminal hypervariable region that undergoes post-translational modifications, such as prenylation, which is essential for their membrane localization and function.
GTPase Activity[edit | edit source]
Ras proteins possess intrinsic GTPase activity, which allows them to hydrolyze GTP to GDP. This activity is crucial for their function as molecular switches. In their GTP-bound form, Ras proteins are active and can interact with various downstream effectors to propagate signaling pathways. The conversion to the GDP-bound form inactivates Ras, terminating the signal.
Regulation[edit | edit source]
Ras activity is tightly regulated by two main types of regulatory proteins:
- Guanine nucleotide exchange factors (GEFs): These proteins facilitate the exchange of GDP for GTP, activating Ras.
- GTPase-activating proteins (GAPs): These proteins enhance the intrinsic GTPase activity of Ras, promoting the hydrolysis of GTP to GDP and inactivating Ras.
Role in Signal Transduction[edit | edit source]
Ras proteins are key players in several signaling pathways, most notably the MAPK/ERK pathway. Upon activation by upstream signals, such as growth factors binding to receptor tyrosine kinases, Ras activates a cascade of kinases that ultimately lead to changes in gene expression and cellular responses.
Clinical Significance[edit | edit source]
Mutations in Ras genes, such as HRAS, KRAS, and NRAS, are implicated in various human cancers. These mutations often result in constitutively active Ras proteins that drive uncontrolled cell proliferation and survival, contributing to oncogenesis. KRAS mutations are particularly common in pancreatic cancer, colorectal cancer, and non-small cell lung cancer.
Research and Therapeutic Approaches[edit | edit source]
Given the role of Ras in cancer, it is a significant target for therapeutic intervention. However, directly targeting Ras has been challenging due to its high affinity for GTP/GDP and the lack of suitable binding pockets for small molecules. Recent advances include the development of inhibitors targeting specific mutant forms of Ras, such as KRAS G12C inhibitors.
Also see[edit | edit source]
Search WikiMD
Ad.Tired of being Overweight? Try W8MD's physician weight loss program.
Semaglutide (Ozempic / Wegovy and Tirzepatide (Mounjaro / Zepbound) available.
Advertise on WikiMD
WikiMD's Wellness Encyclopedia |
Let Food Be Thy Medicine Medicine Thy Food - Hippocrates |
Translate this page: - East Asian
中文,
日本,
한국어,
South Asian
हिन्दी,
தமிழ்,
తెలుగు,
Urdu,
ಕನ್ನಡ,
Southeast Asian
Indonesian,
Vietnamese,
Thai,
မြန်မာဘာသာ,
বাংলা
European
español,
Deutsch,
français,
Greek,
português do Brasil,
polski,
română,
русский,
Nederlands,
norsk,
svenska,
suomi,
Italian
Middle Eastern & African
عربى,
Turkish,
Persian,
Hebrew,
Afrikaans,
isiZulu,
Kiswahili,
Other
Bulgarian,
Hungarian,
Czech,
Swedish,
മലയാളം,
मराठी,
ਪੰਜਾਬੀ,
ગુજરાતી,
Portuguese,
Ukrainian
Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates Wikipedia, licensed under CC BY SA or similar.
Contributors: Prab R. Tumpati, MD