Alkaptonuria
(Redirected from Alkaptonuric ochronosis)
Alkaptonuria is a rare inherited genetic disorder in which the body cannot process the amino acids phenylalanine and tyrosine, which occur in protein. It is caused by a mutation in the HGD gene for the enzyme homogentisate 1,2-dioxygenase (EC 1.13.11.5
); if a person inherits an abnormal copy from both parents (it is a recessive condition), the body accumulates an intermediate substance called homogentisic acid in the blood and tissues. Homogentisic acid and its oxidized form alkapton are excreted in the urine, giving it an unusually dark color. The accumulating homogentisic acid causes damage to cartilage (ochronosis, leading to osteoarthritis) and heart valves, as well as precipitating as kidney stones and stones in other organs. Symptoms usually develop in people over 30 years old, although the dark discoloration of the urine is present from birth.
Apart from treatment of the complications (such as pain relief and joint replacement for the cartilage damage), the drug nitisinone has been found to suppress homogentisic acid production, and research is ongoing as to whether it can improve symptoms. Alkaptonuria is a rare disease; it occurs in one in 250,000 people, but is more common in Slovakia and the Dominican Republic. (May 2018)
Signs and symptoms[edit | edit source]
Patients with black bone disease are asymptomatic as children or young adults, but their urine may turn brown or even inky black if collected and left exposed to open air.[1] Pigmentation may be noted in the cartilage of the ear and other cartilage,[1][2] and the sclera and corneal limbus of the eye.[3]
After the age of 30, people begin to develop pain in the weight-bearing joints of the spine, hips, and knees. The pain can be severe to the point that interferes with activities of daily living and may affect ability to work. Joint-replacement surgery (hip and shoulder) is often necessary at a relatively young age.[1] In the longer term, the involvement of the spinal joints leads to reduced movement of the rib cage and can affect breathing.[1] Bone mineral density may be affected, increasing the risk of bone fractures, and rupture of tendons and muscles may occur.[1]
Valvular heart disease, mainly calcification and regurgitation of the aortic and mitral valves, may occur, and in severe and progressive cases, valve replacement may be necessary. Irregularities in the heart rhythm and heart failure affect a significant proportion of people with alkaptonuria (40% and 10%, respectively).[1] Hearing loss affects 40% of people. Also, a propensity to developing kidney stones exists, and eventually also gallstones and stones in the prostate and salivary glands (sialolithiasis) can occur.[1]
Pathophysiology[edit | edit source]
All people carry in their DNA two copies (one received from each parent) of the gene HGD, which contains the genetic information to produce the enzyme homogentisate 1,2-dioxygenase (HGD) which can normally be found in numerous tissues in the body (liver, kidney, small intestine, colon, and prostate). In people with alkaptonuria, both copies of the gene contain abnormalities that mean that the body cannot produce an adequately functioning enzyme.[4] HGD mutations are generally found in certain parts (exons 6, 8, 10, and 13), but a total of over 100 abnormalities has been described throughout the gene.[4] The normal HGD enzyme is a hexamer (it has six subunits) that are organized in two groups of three (two trimers) and contains an iron atom. Different mutations may affect the structure, function, or solubility of the enzyme.[4] Very occasionally, the disease appears to be transmitted in an autosomal-dominant fashion, where a single abnormal copy of HGD from a single parent is associated with alkaptonuria; other mechanisms or defects in other genes possibly are responsible in those cases.[4]
The HGD enzyme is involved in the metabolism (chemical processing) of the aromatic amino acids phenylalanine and tyrosine. Normally, these enter the bloodstream through protein-containing food and the natural turnover of protein in the body. Tyrosine is specifically required for a number of functions, such as hormones (e.g. thyroxine, the thyroid hormone), melanin (the dark pigment in the skin and hair), and certain proteins, but the vast majority (over 95%) is unused and is metabolized through a group of enzymes that eventually generate acetoacetate and malate.[1] In alkaptonuria, the HGD enzyme cannot metabolize the homogentisic acid (generated from tyrosine) into 4-maleylacetoacetate, and homogentisic acid levels in the blood are 100-fold higher than would normally be expected, despite the fact that a substantial amount is eliminated into the urine by the kidneys.[1]
The homogentisic acid is converted to the related substance benzoquinone acetic acid which forms polymers that resemble the skin pigment melanin. These are deposited in the collagen, a connective tissue protein, of particular tissues such as cartilage. This process is called ochronosis (as the tissue looks ochre); ochronotic tissue is stiffened and unusually brittle, impairing its normal function and causing damage.[1]
Diagnosis[edit | edit source]
If the diagnosis of alkaptonuria is suspected, it can be confirmed or excluded by collecting urine for 24 hours and determining the amount of homogentisic acid by means of chromatography. No assay of HGA in blood has been validated.[1] The Genetic Testing Registry is used for maintaining information about the genetic test for alkaptonuria.[5]
The severity of the symptoms and response to treatment can be quantified through a validated questionnaire titled the AKU Severity Score Index. This assigns scores to the presence of particular symptoms and features, such as the presence of eye and skin pigmentation, joint pain, heart problems, and organ stones.[1]
Treatment[edit | edit source]
No treatment modality has been unequivocally demonstrated to reduce the complications of alkaptonuria. Main treatment attempts have focused on preventing ochronosis through the reduction of accumulating homogentisic acid. Such commonly recommended treatments include large doses of ascorbic acid (vitamin C) or dietary restriction of amino acids phenylalanine and tyrosine. However, vitamin C treatment has not shown to be effective,[1] and protein restriction (which can be difficult to adhere to) has not shown to be effective in clinical studies.[1]
Several studies have suggested that the herbicide nitisinone may be effective in the treatment of alkaptonuria. Nitisinone inhibits the enzyme 4-hydroxyphenylpyruvate dioxygenase, responsible for converting tyrosine to homogentisic acid, thereby blocking the production and accumulation of HGA. Nitisinone has been used for some time at much higher doses in the treatment of type I tyrosinemia. Nitisinone treatment has been shown to cause a larger than 95% reduction in plasma and urinary HGA.[1] The main drawback is accumulation of tyrosine, the long-term risks of which are unknown; a particular concern exists about damage to the cornea of the eye. Long-term use requires frequent monitoring for complications.[1]
Prognosis[edit | edit source]
Alkaptonuria does not appear to affect life expectancy, although the last study on the topic is from 1985.[1] The main impact is on quality of life; many people with alkaptonuria have disabling symptoms such as pain, poor sleep, and breathing symptoms. These generally start in the fourth decade. The typical age at requiring joint replacement surgery is 50–55 years.[1]
Epidemiology[edit | edit source]
In most ethnic groups, the prevalence of alkaptonuria is between 1:100,000 and 1:250,000.[4] In Slovakia and the Dominican Republic, the disease is much more common, with prevalence estimated at 1:19,000 people.[4] As for Slovakia, this is not the result of a single mutation, but due to a group of 12 mutations in specific "hot spots" of the HGD gene.[4] The Slovakian clustering probably arose in a small area in the northwest of the country and spread after the 1950s due to migration.[4]
History[edit | edit source]
Alkaptonuria was one of the four diseases described by Archibald Edward Garrod, as being the result of the accumulation of intermediates due to metabolic deficiencies. He linked ochronosis with the accumulation of alkaptans in 1902,[4][6] and his views on the subject, including its mode of heritance, were summarized in a 1908 Croonian Lecture at the Royal College of Physicians.[4][7][8]
The defect was narrowed down to homogentisic acid oxidase deficiency in a study published in 1958.[4][9] The genetic basis was elucidated in 1996, when HGD mutations were demonstrated.[4][10]
A 1977 study showed that an ochronotic Egyptian mummy had probably suffered from alkaptonuria.[11][12]
Research directions[edit | edit source]
Research collaborations by several national centres have been established to find a more definitive treatment for alkaptonuria. This has included studies on the use of nitisinone and investigations into antioxidants to inhibit ochronosis.[4] The ideal treatment would replace HGD enzyme function without accumulating other substances.[1]
See also[edit | edit source]
- Ochronosis
- List of cutaneous conditions
- List of radiographic findings associated with cutaneous conditions
References[edit | edit source]
- ↑ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 , Recent advances in management of alkaptonuria (invited review; best practice article), J. Clin. Pathol., Vol. 66(Issue: 5), pp. 367–73, DOI: 10.1136/jclinpath-2012-200877, PMID: 23486607,
- ↑ , The biology of hyperpigmentation syndromes, Pigment Cell Melanoma Res, Vol. 27(Issue: 4), pp. 512–24, DOI: 10.1111/pcmr.12235, PMID: 24612852,
- ↑ Lindner, Moritz, On the ocular findings in ochronosis: a systematic review of literature, BMC Ophthalmology, Vol. 14(Issue: 1), pp. 12, DOI: 10.1186/1471-2415-14-12, PMID: 24479547, PMC: 3915032,
- ↑ 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 4.11 4.12 Zatkova A, An update on molecular genetics of Alkaptonuria (AKU), J. Inherit. Metab. Dis., Vol. 34(Issue: 6), pp. 1127–36, DOI: 10.1007/s10545-011-9363-z, PMID: 21720873,
- ↑ Alkaptonuria Full text, Anonymous, , 18 March 2016,
- ↑ Garrod AE, The incidence of alkaptonuria: a study in clinical individuality, Lancet, 1902, Vol. 2(Issue: 4137), pp. 1616–1620, DOI: 10.1016/S0140-6736(01)41972-6, PMID: 8784780, PMC: 2230159, Reproduced in Garrod AE, The incidence of alkaptonuria: a study in chemical individuality. 1902 classical article, Yale Journal of Biology and Medicine, 2002, Vol. 75(Issue: 4), pp. 221–31, PMID: 12784973, PMC: 2588790,
- ↑ Garrod AE, The Croonian lectures on inborn errors of metabolism: lecture II: alkaptonuria, Lancet, 1908, Vol. 2(Issue: 4428), pp. 73–79, DOI: 10.1016/s0140-6736(01)78041-5, Full text,
- ↑ Inborn errors of metabolism Full text, Garrod AE, , Oxford University Press, 1909,
- ↑ , The nature of the defect in tyrosine metabolism in alcaptonuria, Journal of Biological Chemistry, Vol. 230(Issue: 1), pp. 251–60, PMID: 13502394, Full text,
- ↑ , The molecular basis of alkaptonuria, Nature Genetics, 1996, Vol. 14(Issue: 1), pp. 19–24, DOI: 10.1038/ng0996-19, PMID: 8782815,
- ↑ , Biochemical identification of homogentisic acid pigment in an ochronotic egyptian mummy, Science, 1977, Vol. 197(Issue: 4303), pp. 566–8, DOI: 10.1126/science.327549, PMID: 327549,
- ↑ , Characterization of mummy bone ochronotic pigment., JAMA, Vol. 240(Issue: 2), pp. 136–8, DOI: 10.1001/jama.1978.03290020058024, PMID: 351220,
External links[edit | edit source]
Classification | |
---|---|
External resources |
Search WikiMD
Ad.Tired of being Overweight? Try W8MD's physician weight loss program.
Semaglutide (Ozempic / Wegovy and Tirzepatide (Mounjaro / Zepbound) available.
Advertise on WikiMD
WikiMD's Wellness Encyclopedia |
Let Food Be Thy Medicine Medicine Thy Food - Hippocrates |
Translate this page: - East Asian
中文,
日本,
한국어,
South Asian
हिन्दी,
தமிழ்,
తెలుగు,
Urdu,
ಕನ್ನಡ,
Southeast Asian
Indonesian,
Vietnamese,
Thai,
မြန်မာဘာသာ,
বাংলা
European
español,
Deutsch,
français,
Greek,
português do Brasil,
polski,
română,
русский,
Nederlands,
norsk,
svenska,
suomi,
Italian
Middle Eastern & African
عربى,
Turkish,
Persian,
Hebrew,
Afrikaans,
isiZulu,
Kiswahili,
Other
Bulgarian,
Hungarian,
Czech,
Swedish,
മലയാളം,
मराठी,
ਪੰਜਾਬੀ,
ગુજરાતી,
Portuguese,
Ukrainian
Medical Disclaimer: WikiMD is not a substitute for professional medical advice. The information on WikiMD is provided as an information resource only, may be incorrect, outdated or misleading, and is not to be used or relied on for any diagnostic or treatment purposes. Please consult your health care provider before making any healthcare decisions or for guidance about a specific medical condition. WikiMD expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by WikiMD. If you do not agree to the foregoing terms and conditions, you should not enter or use this site. See full disclaimer.
Credits:Most images are courtesy of Wikimedia commons, and templates Wikipedia, licensed under CC BY SA or similar.
Contributors: Prab R. Tumpati, MD